Abstract

BackgroundBiomechanical studies have linked the handrim wheelchair propulsion with a prevalence of upper limb musculoskeletal disorders. The purpose of this study was to examine the influence of the wheelchair settings on upper limb kinematics during wheelchair propulsion. Recordings were made under various wheelchair configuration conditions to understand the effect of wheelchair settings on kinematics parameters such shoulder, elbow and wrist angles. MethodsTen experts and ten beginners’ subjects propelled an experimental wheelchair on a roller ergometer system at a comfortable speed. Twelve wheelchair configurations were tested. Kinematics were recorded for each configuration. Based on the hand position relatively to the handrim, the main kinematic parameters of wheelchair propulsion were investigated on the whole propulsion cycle and a key event such as handrim contact and release. FindingsCompared to the beginner subjects, all the experts’ subjects generally present higher joint amplitude and propulsion speeds. Seat height and antero-posterior axle position influence usage of the hand-rim, timing parameters and configurations of upper limb joints. Results seem to confirm that low and backward seat position allow a greater efficiency. Nevertheless, according that proximity of joint limit is a well known factor of musculoskeletal disorders, our results let us think that too low and backward seat position, increasing joints positions and amplitudes, could increase the risk of upper limb injuries in relation with manual wheelchair propulsion. InterpretationKinematic differences highlight that future studies on wheelchair propulsion should only be done with impaired experienced subjects. Furthermore, this study provides indications on how wheelchair settings can be used for upper limb injury prevention.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.