Abstract
A novel approach is proposed for the modeling of rigid-wheel and soft-soil interaction to efficiently compute normal and shear stress distributions in the contact area. The authors propose a velocity field in the vicinity of the contact area based on the physical nature of the problem. Thereupon, the incremental changes to the stress field are computed by resorting to elastoplasticity theory and an appropriate already existing constitutive relation for soil. The proposed approach leads to results that agree well with those obtained using well-established terramechanics models, while addressing some of their shortcomings. In addition, the proposed approach uses generalized velocities of the wheel as inputs, which makes it compatible with dynamic models of multibody systems. The dynamic slip-sinkage behavior of the wheel and the semielliptical shape of the normal stress distribution under the wheel are natural outcomes of the proposed model. Experimental investigation under various ranges of wheel slippage shows good agreement with the data available in the literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.