Abstract

An enhancement in the wheel–rail contact model used in a nonlinear vehicle–structure interaction (VSI) methodology for railway applications is presented, in which the detection of the contact points between wheel and rail in the concave region of the thread–flange transition is implemented in a simplified way. After presenting the enhanced formulation, the model is validated with two numerical applications (namely, the Manchester Benchmarks and a hunting stability problem of a suspended wheelset), and one experimental test performed in a test rig from the Railway Technical Research Institute (RTRI) in Japan. Given its finite element (FE) nature, and contrary to most of the vehicle multibody dynamic commercial software that cannot account for the infrastructure flexibility, the proposed VSI model can be easily used in the study of train–bridge systems with any degree of complexity. The validation presented in this work proves the accuracy of the proposed model, making it a suitable tool for dealing with different railway dynamic applications, such as the study of bridge dynamics, train running safety under different scenarios (namely, earthquakes and crosswinds, among others), and passenger riding comfort.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.