Abstract

Compact omnidirectional mobile robots are required to automate transportation of raw materials, products, etc. within an industrial plant. This paper focuses on omni wheel robots with low vibration and wheel arrangements that contribute to compactness. Due to its wheels’ configuration, our proposed compact robot may have different sensitivity to noise (controller) and different performance (errors) when following a predetermined path, compared to conventional ones. Using a simple DC motor, a robot with the proposed arrangement and a conventional robot run along a predetermined path. A linear–quadratic regulator that is processed lightly is used to control the robots for practicality. As a result, the robot’s trajectory in the proposed arrangement showed a distortion different from that of the conventional type. The distortion of the trajectory was attributed to the inability of the DC motor to rotate stably at low speed. The different distortions exhibited suggest that the wheel arrangement changes the effect of imperfect control on the robot’s motion. In addition, the proposed arrangement showed the possibility of being suitable for a transport robot because the wheels are placed in the four corners of the robot, facing forward, backward, left, and right.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.