Abstract
Accurate predictions of wheat yields are essential to farmers'production plans and to the international trade in wheat. However, only poor approximations of the productivity of wheat crops in China can be obtained using traditional linear regression models based on vegetation indices and observations of the yield. In this study, Sentinel-2 (multispectral data) and ZY-1 02D (hyperspectral data) were used together with 15709 gridded yield data (with a resolution of 5m × 5m) to predict the winter wheat yield. These estimates were based on four mainstream data-driven approaches: Long Short-Term Memory (LSTM), Random Forest (RF), Gradient Boosting Decision Tree (GBDT), and Support Vector Regression (SVR). The method that gave the best estimate of the winter wheat yield was determined, and the accuracy of the estimates based on multispectral and hyperspectral data were compared. The results showed that the LSTM model, for which the RMSE of the estimates was 0.201 t/ha, performed better than the RF (RMSE = 0.260 t/ha), GBDT (RMSE = 0.306 t/ha), and SVR (RMSE = 0.489 t/ha) methods. The estimates based on the ZY-1 02D hyperspectral data were more accurate than those based on the 30-m Sentinel-2 data: RMSE = 0.237 t/ha for the ZY-1 02D data, which is about a 5% improvement on the RSME of 0.307 t/ha for the 30-m Sentinel-2 data. However, the 10-m Sentinel-2 data performed even better, giving an RMSE of 0.219 t/ha. In addition, it was found that the greenness vegetation index SR (simple ratio index) outperformed the traditional vegetation indices. The results highlight the potential of the shortwave infrared bands to replace the visible and near-infrared bands for predicting crop yields Our study demonstrates the advantages of the deep learning method LSTM over machine learning methods in terms of its ability to make accurate estimates of the winter wheat yield.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.