Abstract

Microbial fuel cells have emerged as a technique that can effectively treat wastewater with simultaneous electricity generation. The present study explored the performance of microbial fuel cell for decolorizing and degradation of azo dyes including, remazol brilliant blue (RBB), mordant blue 9 (MB9), acid red1 (AR1), and orange G (OG), while, simultaneously generating electricity. Wheat straw and its hydrolysate was used as a potential substrate in MFC. The hydrolysate was prepared through the degradation of wheat straw by P. floridensis, P. brevispora and P. chrysosporium, while the yeast Pichia fermentans was used as biocatalyst. Dye decolorization was carried out in a fungus-yeast mediated single-chambered MFC batch mode, U-shaped reactor, and bottle reactor in continuous mode. The maximum power density recorded in U shaped continuous reactor was 34.99 mW m−2 on 21st day of the experiment. The best response of dye decolorization was observed in the case of MB9 (96%) with P. floridensis in the continuous electrochemical reactor followed by RBB (90–95%), OG (76%), and AR1 (38%). The toxicity of the treated wastewater was assessed using phytotoxicity analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.