Abstract

The long-term autonomous existence of man in extraterrestrial conditions is associated with the need to cultivate plants—the only affordable and effective means for both providing oxygen and CO2 utilization, and providing one of the most habitual and energetically valuable products: plant food. In this study, we analyzed the results of the space odyssey of wheat and compared the morphological features of parental grains harvested from soil grown wheat plants, the grains obtained from plants grown in a specialized device for plant cultivation—the “Lada” space greenhouses during space flight in the ISS, and the grains obtained from plants in the same device on Earth. The seeds obtained under various conditions were studied using scanning electron microscopy. We studied the mutual location of the surface layers of the kernel cover tissues, the structural features of the tube and cross cells of the fruit coat (pericarp), and the birsh hairs of the kernels. It was found that the grains obtained under wheat plants cultivation on board of the ISS in near space had some specific differences from the parental, original grains, and the grains obtained from plants grown in the “Lada” greenhouse in ground conditions. These changes were manifested in a shortening of the birsh hairs, and a change in the size and relative arrangement of the cells of the kernel coat. We suggest that such changes are a manifestation of the sensitivity of the cytoskeleton reorganization systems and water exchange to the influence of particular physical conditions of space flight (microgravity, increased doses of radiation, etc.). Thus, the revealed changes did not hinder the wheat grains production “from seed to seed”, which allows the cultivation of this crop in stable life support systems in near earth orbit.

Highlights

  • The cultivation of cereals is crucial for the development of human civilization in the transition from gathering to settled agriculture

  • “from seed to seed”, which allows the cultivation of this crop in stable life support systems in near earth orbit

  • The goal of this study was a comparative elucidation of the morphology of surface tissues of wheat kernels formed in space flight conditions, taking into account the peculiarities of cultivation in the “Lada” space greenhouse

Read more

Summary

Introduction

The cultivation of cereals is crucial for the development of human civilization in the transition from gathering to settled agriculture. The first examples of the cultivation of diploid and tetraploid wheat were noted in south-eastern Turkey [1]. The cultivation spread to the territory of the Middle East already in the form of hexaploid bread wheat, which is grown everywhere [2]. The question arose of promoting this crop along with the expansion of the human habitat. Man has made only timid steps beyond the limits of the earth’s atmosphere, and is only beginning to explore outer space aboard various spacecrafts and long-term orbital stations. The growing of dicotyledonous plants in near Earth orbit in the Soviet (Russian) “Mir” space station and the International Space

Objectives
Methods
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call