Abstract

BackgroundYeasts, which are ubiquitous in agroecosystems, are known to degrade various xenobiotics. The aim of this study was to analyze the effect of fungicides on the abundance of natural yeast communities colonizing winter wheat leaves, to evaluate the sensitivity of yeast isolates to fungicides in vivo, and to select yeasts that degrade propiconazole.ResultsFungicides applied during the growing season generally did not affect the counts of endophytic yeasts colonizing wheat leaves. Propiconazole and a commercial mixture of flusilazole and carbendazim decreased the counts of epiphytic yeasts, but the size of the yeast community was restored after 10 days. Epoxiconazole and a commercial mixture of fluoxastrobin and prothioconazole clearly stimulated epiphyte growth. The predominant species isolated from leaves were Aureobasidium pullulans and Rhodotorula glutinis. In the disk diffusion test, 14 out of 75 yeast isolates were not sensitive to any of the tested fungicides. After 48 h of incubation in an aqueous solution of propiconazole, the Rhodotorula glutinis Rg 55 isolate degraded the fungicide in 75%. Isolates Rh. glutinis Rg 92 and Rg 55 minimized the phytotoxic effects of propiconazole under greenhouse conditions. The first isolate contributed to an increase in the dry matter content of wheat seedlings, whereas the other reduced the severity of chlorosis.ConclusionNot sensitivity of many yeast colonizing wheat leaves on the fungicides and the potential of isolate Rhodotorula glutinis Rg 55 to degrade of propiconazole was established. Yeast may partially eliminate the ecologically negative effect of fungicides.

Highlights

  • Yeasts, which are ubiquitous in agroecosystems, are known to degrade various xenobiotics

  • Yeast strains Rh. glutinis, Cryptococcus laurentii and A. pullulans used by Lima et al [13] as antagonists of apple pathogens were sensitive to triazoles and resistant to procymidone, vinclozolin, copper and oxychloride

  • The aim of this study was to analyze the effect of fungicides on the abundance of natural fungal communities colonizing winter wheat leaves in a field experiment, to evaluate the sensitivity of yeast isolates to fungicides in vitro, and to select yeasts with a high potential for degrading propiconazole to protect wheat seedlings against the phytotoxic effects of this compound

Read more

Summary

Introduction

Yeasts, which are ubiquitous in agroecosystems, are known to degrade various xenobiotics. The aim of this study was to analyze the effect of fungicides on the abundance of natural yeast communities colonizing winter wheat leaves, to evaluate the sensitivity of yeast isolates to fungicides in vivo, and to select yeasts that degrade propiconazole. Fungicides’ effects on non-target saprotrophic fungi have to be explored because these microorganisms have a high potential for inhibiting the growth of plant pathogens [11]. These effects are difficult to monitor under field conditions because saprotrophs are influenced by numerous factors, including weather, growth stage and the health status of the protected plants [7]. In a study by Wachowska [14], a strobilurin fungicide strongly inhibited the development of Sporobolomyces roseus, Candida tropicalis and Pichia anomala

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call