Abstract

The differences in wheat flour characteristics caused by ancient (pestle and mortar), old (stone hand mill), and modern (roller and cyclone) milling techniques and their effect on in vitro starch digestibility of wheat porridge using the simulated TIM Gastrointestinal Model (TIM-1) were investigated. Ancient flour (AF) was the coarsest flour (∼70 % is >1000 µm), followed by old wholemeal flour (OWF) and old refined flour (ORF) with similar particle size distribution showing one prominent peak (at ∼1000 µm for OWF and ∼800 µm for ORF). Modern refined flour (MRF) had a monomodal distribution centered at a particle size of ∼100 μm, while modern wholemeal flour (MWF) particle size was distributed between 40 and 600 μm. MRF and MWF porridges had higher cumulative sugar bioaccessibility than OWF and AF porridges, with ORF porridge having an intermediate cumulative sugar bioaccessibility. Characterizing the cumulative sugar bioaccessibility profile with a shifted logistic model allows identifying that the maximum sugar bioaccessibility and rate of sugar release were significantly higher (p < 0.05) for MRF and MWF compared to OWF and AF porridges, while the induction times were shorter, demonstrating the importance of processing on modulating starch digestibility.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call