Abstract

In Washington, over fifty percent of the wheat produced under rainfed conditions receives less than 300 mm of annual precipitation. Hence, a winter wheat-summer fallow cropping system has been established to obtain adequate moisture for winter wheat production. Current tilled fallow systems receive significant soil erosion through both wind and water. As a result, no-till chemical fallow systems are being adopted to mitigate erosion concerns. The objective of this study was to evaluate current Pacific Northwest cultivars under no-till chemical fallow and tilled fallow systems to identify cultivars adapted to a late-planted no-till system. Twenty-one cultivars were planted in a split-plot design with fallow type as the main plot and genotype as the sub-plot. Four replications were planted at two locations over three years. Data was collected on heading date, grain yield and grain volume weight. Analysis of variance was conducted on data from each year and location. Results were significant for all traits. Cultivars in the late-planted no-till system yielded an average of 39% less than the tilled fallow system. It is evident that cultivars vary in their adaptability and yield stability across production systems. Chukar and Eltan displayed the highest levels of yield stability, and growers who wish to plant winter wheat in a late-planted no-till system may benefit from choosing these cultivars.

Highlights

  • Over fifty percent of the wheat (Triticum aestivum L.) producing acreage in Washington State receives less than 300 mm of annual precipitation [1]

  • Our results indicate that variety selection plays a critical role in producing a competitive wheat crop under a late-planted no-till production system

  • Those growers in the dryland production areas of the Pacific Northwest who wish to plant winter wheat in a late-planted no-till system may benefit from choosing yield stable cultivars, such as Chukar or Eltan

Read more

Summary

Introduction

Over fifty percent of the wheat (Triticum aestivum L.) producing acreage in Washington State receives less than 300 mm of annual precipitation [1]. The majority of this precipitation falls during the winter and early spring. With this limiting amount of precipitation, it is not economically viable for growers to continuously crop their land [2,3]. Growers have adopted a rotation of tilled summer fallow followed by winter wheat. Seed may be planted more than 150 mm deep to reach adequate moisture for germination [5,6]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.