Abstract

Powdery mildew caused by Blumeria graminis f.sp. tritici (Bgt) is a detrimental disease of bread wheat (Triticum aestivum). Bgt infection initiates with the germination of its conidia, which is stimulated by plant cuticle-derived wax signals. Here, we identified wheat 3-KETOACYL-CoA SYNTHASE (TaKCS6), a homolog of barley HvKCS6, as a key enzyme in the biosynthesis of wheat cuticular wax. We found that both cuticular wax accumulation and Bgt germination were impeded on leaves of TaKCS6-knockdown plants. The TaKCS6 promoter-associated bHLH type transcription factor 1 (TaKPAB1) binds to the TaKCS6 promoters and recruits the CHD3 protein TaCHR729 to them via physical association. Knockdown of TaCHR729 results in decreased trimethylation of histone H3 Lys 4 (H3K4me3) at the TaKCS6 promoters and down-regulation of TaKCS6 transcription, leading to a reduction of cuticular wax accumulation and Bgt germination on leaves. We further identified very-long-chain aldehydes with a chain length above C24 as the signals regulated by the TaCHR729-TaKPAB1-TaKCS6 pathway for stimulating Bgt germination. Our study thus reveals that the transcription factor-mediated recruitment of chromatin remodeling machinery is essential for regulating the biosynthesis of cuticular wax that is required for stimulating Bgt germination in bread wheat.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call