Abstract

The newly emerged wheat blast fungus Magnaporthe oryzae Triticum (MoT) is a severe threat to global wheat production. The fungus is a distinct, exceptionally diverse lineage of the M. oryzae, causing rice blast disease. Genome-based approaches employing MoT-specific markers are used to detect MoT field isolates. Sequencing the whole genome indicates the presence of core chromosome and mini-chromosome sequences that harbor effector genes and undergo divergent evolutionary routes. Significant genetic and pathotype diversity within the fungus population gives ample potential for evolutionary change. Identifying and refining genetic markers allows for tracking genomic regions with stable blast resistance. Introgression of quantitative and R gene resistance into popular cultivars is crucial to controlling disease in areas where the pathogen population is diverse and well established. Novel approaches such as CRISPR/Cas-9 genome editing could generate resistant varieties in wheat within a short time. This chapter provides an extensive summary of the genetic and genomic aspects of the wheat blast fungus MoT and offers an essential resource for wheat blast research in the affected areas.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.