Abstract
Abstract. Wheat is one of the most important food supply and food security globally, especially in developing countries. Therefore, predicting the performance and determining the factors that affect the production of this product is very important. Biomass is one of the crop’s most important biophysical parameters, and its correct estimation can help improve accurate monitoring of growth and crop performance forecasting. With the recent advances in remote sensing, access to aerial images taken by unmanned aerial vehicles (UAV) for monitoring crops has been provided. This study investigates the potential of visible UAV images and the resulting vegetation indices to estimate the dry biomass of two types of Brazilian wheat. For this purpose, the performance of three regression algorithms, including Random Forest (RF), eXtreme Gradient Boosting (XGB), and Gradient Boosting Machine (GBM), to estimate wheat biomass was evaluated. Also, to improve the performance of regression models, Bayesian optimization (BO) was used to adjust the Hyper-parameters, and random forest feature selection was used to select the optimal subset of features. Based on the results, the XGB algorithm with the Root Mean Square Error (RMSE) of about 911.86 (Kg/ha) and coefficient of determination (R2) of about 0.89% showed better performance in biomass estimation than other algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.