Abstract

Educators in medical image interpretation have difficulty finding scientific evidence as to how they should design their instruction. We review and comment on 81 papers that investigated instructional design in medical image interpretation. We distinguish between studies that evaluated complete offline courses and curricula, studies that evaluated e-learning modules, and studies that evaluated specific educational interventions. Twenty-three percent of all studies evaluated the implementation of complete courses or curricula, and 44% of the studies evaluated the implementation of e-learning modules. We argue that these studies have encouraging results but provide little information for educators: too many differences exist between conditions to unambiguously attribute the learning effects to specific instructional techniques. Moreover, concepts are not uniformly defined and methodological weaknesses further limit the usefulness of evidence provided by these studies. Thirty-two percent of the studies evaluated a specific interventional technique. We discuss three theoretical frameworks that informed these studies: diagnostic reasoning, cognitive schemas and study strategies. Research on diagnostic reasoning suggests teaching students to start with non-analytic reasoning and subsequently applying analytic reasoning, but little is known on how to train non-analytic reasoning. Research on cognitive schemas investigated activities that help the development of appropriate cognitive schemas. Finally, research on study strategies supports the effectiveness of practice testing, but more study strategies could be applicable to learning medical image interpretation. Our commentary highlights the value of evaluating specific instructional techniques, but further evidence is required to optimally inform educators in medical image interpretation.

Highlights

  • How to teach medical image interpretation? For an educator in radiology, dermatology, pathology or cardiology, this might be the question in mind

  • E-learning is a popular way to promote active learning: it allows for large groups of learners to engage in learning at a time and place convenient for them, has the potential to be tailored to learners’ needs, and allows for instructional designs that cannot be implemented in other formats (Cook et al, 2008)

  • Instructional design in medical image interpretation has surpassed teacher-centered, lecture-based education and many examples of active, student-centered learning have successfully been implemented in medical image interpretation

Read more

Summary

Introduction

How to teach medical image interpretation? For an educator in radiology, dermatology, pathology or cardiology, this might be the question in mind. Since ‘evidence-based medicine’ is held in high regard by clinicians, medical educators might aim to search the literature for evidence on how to design their instruction. Instructional design is the science and practical field of creating educational experiences (Merrill et al, 1996). This can be as broad as a curriculum or as narrow as a lesson, or even a single instructive animation. Research on instructional design in medical image interpretation suffers from being scattered all over the literature, from a lack of cross-references and a lack of theoretical background. On the one hand we synthesize existing literature about instructional design in medical image interpretation. While we used an extensive literature search to inform our argument, the aim of this paper is not to be systematic and exhaustive, but to provide a commentary that is informed by a literature search

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.