Abstract
Eukaryotic genomes are composed of genes of different evolutionary origins. This is especially true in the case of photosynthetic eukaryotes, which, in addition to typical eukaryotic genes and genes of mitochondrial origin, also contain genes coming from the primary plastids and, in the case of secondary photosynthetic eukaryotes, many genes provided by the nuclei of red or green algal endosymbionts. Phylogenomic analyses have been applied to detect those genes and, in some cases, have led to proposing the existence of cryptic, no longer visible endosymbionts. However, detecting them is a very difficult task because, most often, those genes were acquired a long time ago and their phylogenetic signal has been heavily erased. We revisit here two examples, the putative cryptic endosymbiosis of green algae in diatoms and chromerids and of Chlamydiae in the first photosynthetic eukaryotes. We show that the evidence sustaining them has been largely overestimated, and we insist on the necessity of careful, accurate phylogenetic analyses to obtain reliable results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.