Abstract

Explosions are currently the primary cause of military combat injuries. A minority of civilian trauma is also caused by explosions. People hurt by explosion are likely to present with complex injuries. The aim of the article is to explain the mechanism underlying these injuries and the associated physiology to help the intensive care clinician manage these casualties properly. The generic term ‘blast injury’ is applied to a collection of injuries caused by explosion. Components of blast injuries have precise definitions relating to the elements of the explosion that caused the injuries: primary blast injury is due to a shock wave, secondary blast injury is caused by fragments and debris colliding with the victim and tertiary blast injury is due to the casualty being thrown against solid objects. Primary blast injury results in damage principally in gas-containing organs, eg the lungs (blast lung) and can lead to impaired pulmonary gas transfer and hypoxaemia. Secondary blast injuries are often penetrating and can lead to haemorrhage while tertiary blast injuries are often blunt and involve substantial tissue damage. Survivors of explosions in confined spaces are more likely to exhibit primary blast injury than those injured in open spaces. The current military approach to immediate management is to apply the C ABC principle (arrest catastrophic haemorrhage first and then deal with airway, breathing and circulation) to achieve Damage Control Resuscitation. Early administration of blood products (plasma as well as red cells) is advocated for those suffering significant haemorrhage. Initial resuscitation is hypotensive to minimise risk of dislodging nascent clots. However, if evacuation is protracted (longer than one hour) then consideration should be given to improving blood flow / oxygen delivery by adopting a revised normotensive blood pressure target to reverse the deleterious consequences of the hypotensive shock state. Animal studies have shown that titrating FiO2 to a target SaO2 of 95% can improve survival and ‘buy time’ during hypotensive resuscitation. Ventilator strategies should use a lung-protective approach with permissive hypercapnia if necessary. Blast casualties are often a challenging group of patients needing expert, tailored, care. Outcome can be good especially in young, otherwise fit, casualties with more than 96% surviving to ICU discharge, although this figure may be lower with a mixed civilian group.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.