Abstract

After 20 years of extensive study in psychology, some musical factors have been identified that can evoke certain kinds of emotions. However, the underlying mechanism of the relationship between music and emotion remains unanswered. This paper intends to find the genuine correlates of music emotion by exploring a systematic and quantitative framework. The task is formulated as a dimensionality reduction problem, which seeks the complete and compact feature set with intrinsic correlates for the given objectives. Since a song generally elicits more than one emotion, we explore dimensionality reduction techniques for multi-label classification. One challenging problem is that the hard label cannot represent the extent of the emotion and it is also difficult to ask the subjects to quantize their feelings. This work tries utilizing the electroencephalography (EEG) signal to solve this challenge. A learning scheme called EEG-based emotion smoothing ( ${{\rm E}^2}{\rm S}$ ) and a bilinear multi-emotion similarity preserving embedding (BME-SPE) algorithm are proposed. We validate the effectiveness of the proposed framework on standard dataset CAL-500. Several influential correlates have been identified and the classification via those correlates has achieved good performance. We build a Chinese music dataset according to the identified correlates and find that the music from different cultures may share similar emotions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.