Abstract
Conventional and scientific cropping patterns are important in realizing the sustainable utilization of Black soil and promoting the high-quality development of agriculture. It also has far-reaching significance for protecting Black soil and constructing the crop rotation system to identify the cropping patterns in Northeast China and analyze their spatio-temporal dynamic change. Using the geo-information Tupu methods and transfer land matrix, this study identified the cropping patterns and their spatio-temporal change based on remote sensing data for three periods, namely 2002–2005, 2010–2013, and 2018–2021. The main results revealed that the maize continuous, mixed cropping, maize-soybean rotation, and soybean continuous cropping patterns were the main cropping patterns in Wangkui County, with the total area of the four patterns accounting for 95.28%, 94.66%, and 81.69%, respectively, in the three periods. Against the backdrop of global climate warming, the cropping patterns of continuous maize and soybean and the mixed cropping pattern in Wangkui County exhibited a trend towards evolving into a maize-soybean rotation in the northern region. Moreover, the maize-soybean rotation further evolved into a mixed cropping system of maize and soybean in the north. Furthermore, the spatio-temporal evolution of cropping patterns was significantly driven by natural and social factors. Specifically, natural factors influenced the spatio-temporal patterns of variation in cropping patterns, while social factors contributed to the transformation of farmers’ cropping decision-making behavior. Accordingly, new insights, institutional policies, and solid solutions, such as exploring and understanding farmers’ behavior regarding crop rotation practices and mitigating the natural and climatic factors for improving food security, are urgent in the black soil region of China.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.