Abstract

Nanocrystalline semiconductors display unique features compared to coarse-grained microstructures and even to their monocrystalline counterparts. We contend that such peculiarities are due to: (1) the extremely large fraction of atoms located at Grain Boundaries (GBs) and (2) the 'character distribution' of GBs, which are mostly high-energy, random interfaces. Initially, we study the structure of random GBs in nanocrystalline semiconductors by means of large-scale Molecular Dynamics (MD) simulations. Subsequently, the atomic structure and electronic properties of some typical high-energy GBs in Si- and C-based nanostructures are characterised by means of a semi-empirical tight-binding Hamiltonian. We show that relevant properties of nanocrystalline semiconductors containing a large fraction of high-energy GBs are quite distinct with respect to those of coarse-grained and bulk semiconductors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.