Abstract

The type 1 angiotensin receptor (AT(1)) activates an array of intracellular signalling pathways that control cell and tissue responses to the peptide hormone angiotensin II (AngII). The capacity of AT(1) receptors to initiate and maintain such signals has typically been explained on the basis of conventional heterotrimeric guanine nucleotide binding protein (G protein) activation, specifically G(q/11). Accumulating evidence from studies utilising a variety of AT(1) receptor mutants and AngII analogues indicates that some important downstream effects of AT(1) receptors are independent of classical G protein coupling. Importantly, AT(1) receptor-mediated endocytosis, tyrosine phosphorylation signalling and mitogen-activated protein kinase activation as well as transactivation of the epidermal growth factor receptor can occur in G(q/11)-uncoupled receptor mutants. These observations point to a functional partitioning of AT(1) receptor signals that permits separation of short-term AngII actions (e.g., vasoconstriction) from more extended events, such as pathological cell growth in heart and blood vessels, and may open up new avenues for selective antagonism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.