Abstract
In gram-negative bacteria, beta-lactamases are the most important mechanism of resistance to beta-lactam antibiotics. Currently, the beta-lactamases receiving the most attention are the extended-spectrum beta-lactamases (ESBLs), inhibitor-resistant beta-lactamases and carbapenemases. When found in Escherichia coli and Klebsiella spp., ESBLs confer resistance to extended-spectrum cephalosporins, such as ceftazidime, cefotaxime and cefepime. Hence, ESBLs limit the choice of beta-lactam therapy to carbapenems. A worrisome trend is the increasing number of pathogens found in isolates from patients in the community that possess ESBLs. It is equally distressing that carbapenemases (serine and metallo-beta-lactamases) are being found in many of the same bacteria that harbor ESBLs, for example Klebsiella pneumoniae. Despite many years studying beta-lactamases, important clinical and scientific questions still remain.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.