Abstract

The name dendritic cell (DC) was given by Steinman to describe the unusual cell type he saw in spleen cell suspensions. This morphological description is not sufficient to specify the cell of so much interest to immunologists; many cells can adopt a similar form. A useful functional definition evolved as Steinman and colleagues explored the immunological properties of this novel cell type (1). DCs were considered as antigen collecting and processing cells able to present antigen on MHC molecules and efficiently activate even primary T-cells. Nowadays, immunologists would likely add to this definition, a capacity to sense the context in which the antigen was collected, via receptors for pathogen or damaged cell-derived material. Why might we need to go beyond the name “dendritic cell” for cells with these well-understood functions? Some limitations of this single name arose early in DC research. This article surveys some problems of definition encountered in past work from our own laboratory. The problems we encountered arose from two sources, the first the discovery of different DC subsets and the need to determine whether these represented different maturation states or separate sub-lineages. The second was the difficulty in distinguishing these DC subsets from macrophages.

Highlights

  • Specialty section: This article was submitted to Antigen Presenting Cell Biology, a section of the journal Frontiers in Immunology

  • The problems we encountered arose from two sources, the first the discovery of different dendritic cell (DC) subsets and the need to determine whether these represented different maturation states or separate sub-lineages

  • We found a similar but less frequent DC subset staining for surface CD8α among the DCs in mouse spleen and these DCs were shown to express mRNA for CD8α [3]

Read more

Summary

Introduction

Specialty section: This article was submitted to Antigen Presenting Cell Biology, a section of the journal Frontiers in Immunology. Differences were apparent in the expression of toll-like and other microbial pattern recognition receptors, in the cytokines produced on activation, in the fate of the T-cells they stimulated, in their capacity to phagocytize dead cells, and in the processing of antigens for MHC class I versus MHC class II presentation [reviewed in Ref.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.