Abstract
Purpose – The purpose of this paper is to provide an overview of the development of an institution wide approach to learning analytics at the University of Wollongong (UOW) and the inclusion of library data drawn from the Library Cube. Design/methodology/approach – The Student Support and Education Analytics team at UOW is tasked with creating policy, frameworks and infrastructure for the systematic capture, mapping and analysis of data from the across the university. The initial data set includes: log file data from Moodle sites, Library Cube, student administration data, tutorials and student support service usage data. Using the learning analytics data warehouse UOW is developing new models for analysis and visualisation with a focus on the provision of near real-time data to academic staff and students to optimise learning opportunities. Findings – The distinct advantage of the learning analytics model is that the selected data sets are updated weekly, enabling near real-time monitoring and intervention where required. Inclusion of library data with the other often disparate data sets from across the university has enabled development of a comprehensive platform for learning analytics. Future work will include the development of predictive models using the rapidly growing learning analytics data warehouse. Practical implications – Data warehousing infrastructure, the systematic capture and exporting of relevant library data sets are requisite for the consideration of library data in learning analytics. Originality/value – What was not anticipated five years ago when the Value Cube was first realised, was the development of learning analytic services at UOW. The Cube afforded University of Wollongong Library considerable advantage: the framework for data harvesting and analysis was established, ready for inclusion within learning analytics data sets and subsequent reporting to faculty.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.