Abstract

There is significant potential for electronic structure methods to improve the quality of the predictions furnished by the tools of computer-aided drug design, which typically rely on empirically derived functions. In this perspective, we consider some recent examples of how quantum mechanics has been applied in predicting protein-ligand geometries, protein-ligand binding affinities and ligand strain on binding. We then outline several significant developments in quantum mechanics methodology likely to influence these approaches: in particular, we note the advent of more computationally expedient ab initio quantum mechanical methods that can provide chemical accuracy for larger molecular systems than hitherto possible. We highlight the emergence of increasingly accurate semiempirical quantum mechanical methods and the associated role of machine learning and molecular databases in their development. Indeed, the convergence of improved algorithms for solving and analyzing electronic structure, modern machine learning methods, and increasingly comprehensive benchmark data sets of molecular geometries and energies provides a context in which the potential of quantum mechanics will be increasingly realized in driving future developments and applications in structure-based drug discovery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.