Abstract
Circular polarizers with left-handed helical metamaterials can transmit right-handed circularly polarized (RCP) light with few losses. But a certain amount of left-handed circularly polarized (LCP) light will occur in the transmitted light, which is the noise of the circular polarizer. Therefore, we defined the ratio of the RCP light intensity to the LCP light intensity as the signal-to-noise (S/N) ratio. In our previous work, it's found that circular polarizers with multi-helical metamaterials have two orders higher S/N ratios than that of single-helical metamaterials. However, it has been a great challenge to fabricate such multi-helical structures with micron or sub-micron feature sizes. Is it possible for the single-helical metamaterials to obtain equally high S/N ratios as the multi-helical ones? To answer this question, we systematically investigated the influences of structure parameters of single-helical metamaterials on the S/N ratios using the finite-different time-domain (FDTD) method. It was found that the single-helical metamaterials can also reach about 30dB S/N ratios, which are equal to the multi-helical ones. Furthermore, we explained the phenomenon by the antenna theory and optimized the performances of the single-helical circular polarizers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.