Abstract

BackgroundFangs are a putative key innovation that revolutionized prey capture and feeding in snakes, and – along with their associated venom phenotypes – have made snakes perhaps the most medically-significant vertebrate animals. Three snake clades are known for their forward-positioned fangs, and these clades (Elapidae, Viperidae, and Atractaspidinae) contain the majority of snakes that are traditionally considered venomous. However, many other snakes are “rear-fanged”: they possess potentially venom-delivering teeth situated at the rear end of the upper jaw. Quantification of fang phenotypes – and especially those of rear-fanged species – has proved challenging or impossible owing to the small size and relative rarity of many such snakes. Consequently, it has been difficult to understand the evolutionary history of both venom and prey-capture strategies across extant snakes. We quantified variation in the dentition of 145 colubriform (“advanced”) snake species using microCT scanning and compared dental characters with ecological data on species’ diet and prey capture method(s) to understand broader patterns in snake fang evolution.ResultsDental traits such as maxilla length, tooth number, and fang size show strong phylogenetic signal across Colubriformes. We find extreme heterogeneity and evolutionary lability in the rear-fanged phenotype in colubrid (colubrine, dipsadine, and natricine lineages) and lamprophiid snakes, in contrast to relative uniformity in the front fanged phenotypes of other groups (vipers and, to a lesser extent, elapids). Fang size and position are correlated with venom-use in vipers, elapids, and colubrid snakes, with the latter group shifting fangs anteriorly by shortening the entire maxillary bone. We find that maxilla length and tooth number may also be correlated with the evolution of dietary specialization. Finally, an ancestral state reconstruction suggests that fang loss is a recurring phenomenon in colubrid snakes, likely accompanied by shifts in diet and prey capture mode.ConclusionsOur study provides a framework for quantifying the complex morphologies associated with venom use in snakes. Our results suggest that fang phenotypes, and particularly the rear-fanged phenotype, in snakes are both diverse and labile, facilitating a wide range of ecological strategies and contributing to spectacular radiations of these organisms in tropical and subtropical biomes worldwide.

Highlights

  • Fangs are a putative key innovation that revolutionized prey capture and feeding in snakes, and – along with their associated venom phenotypes – have made snakes perhaps the most medically-significant vertebrate animals

  • Here, we have shown how evolutionary history and novel selection pressures have shaped the maxillary dentition of colubriform snakes

  • Non-elapid/ non-viperid (NE/NV) colubriforms may be developmentally inhibited from shifting their fangs anteriorly as in elapids and vipers [31]: yet, we show that some colubrid snakes have adapted a similar but less extreme strategy to position their fangs more anteriorly by losing preceding teeth and shortening the maxilla

Read more

Summary

Introduction

Fangs are a putative key innovation that revolutionized prey capture and feeding in snakes, and – along with their associated venom phenotypes – have made snakes perhaps the most medically-significant vertebrate animals. It has been difficult to understand the evolutionary history of both venom and prey-capture strategies across extant snakes. We quantified variation in the dentition of 145 colubriform (“advanced”) snake species using microCT scanning and compared dental characters with ecological data on species’ diet and prey capture method(s) to understand broader patterns in snake fang evolution. A variety of dental specializations evolved to facilitate the capture and consumption of diverse prey These specializations, in turn, may have facilitated the global diversification of snakes, which are far more species-rich than any other comparable clade of squamate reptiles [10]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call