Abstract

Flaky tests are defined as tests that manifest non-deterministic behaviour by passing and failing intermittently for the same version of the code. These tests cripple continuous integration with false alerts that waste developers’ time and break their trust in regression testing. To mitigate the effects of flakiness, both researchers and industrial experts proposed strategies and tools to detect and isolate flaky tests. However, flaky tests are rarely fixed as developers struggle to localise and understand their causes. Additionally, developers working with large codebases often need to know the sources of non-determinism to preserve code quality, i.e., avoid introducing technical debt linked with non-deterministic behaviour, and to avoid introducing new flaky tests. To aid with these tasks, we propose re-targeting Fault Localisation techniques to the flaky component localisation problem, i.e., pinpointing program classes that cause the non-deterministic behaviour of flaky tests. In particular, we employ Spectrum-Based Fault Localisation (SBFL), a coverage-based fault localisation technique commonly adopted for its simplicity and effectiveness. We also utilise other data sources, such as change history and static code metrics, to further improve the localisation. Our results show that augmenting SBFL with change and code metrics ranks flaky classes in the top-1 and top-5 suggestions, in 26% and 47% of the cases. Overall, we successfully reduced the average number of classes inspected to locate the first flaky class to 19% of the total number of classes covered by flaky tests. Our results also show that localisation methods are effective in major flakiness categories, such as concurrency and asynchronous waits, indicating their general ability to identify flaky components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.