Abstract

High band gap Pb bromide perovskite (APbBr3)-based solar cells, where A is a mixture of formamidinium, methylammonium, and Cs, show significantly higher, relative, VOC losses than their iodide analogs. Using photoluminescence-, quantum efficiency-, and surface photovoltage-spectroscopy measurements, we show the absence of any significant electronically active tail states within the bulk of the (FA0.85MA0.1Cs0.05)PbBr3 absorber. All methods confirm that EG = 2.28 eV for this halide perovskite, HaP. Contact potential difference measurements for this HaP, on different substrates, reveal a Z-shape dependence between the substrate work functions and that of the HaP, deposited on it, indicating that the HaP is relatively low doped and that its Fermi level is affected by the substrate onto which it is deposited. We confirm results from electron beam-induced current (EBIC) and other measurements that most voltage loss of cells, made with these HaP films, is at the HaP/selective-contact interface, specifically the...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.