Abstract

Eutherian mammals and saurischian dinosaurs both evolved lineages of huge terrestrial herbivores. Although significantly more saurischian dinosaurs were giants than eutherians, the long bones of both taxa scale similarly and suggest that locomotion was dynamically similar. However, articular cartilage is thin in eutherian mammals but thick in saurischian dinosaurs, differences that could have contributed to, or limited, how frequently gigantism evolved. Therefore, we tested the hypothesis that sub-articular bone, which supports the articular cartilage, changes shape in different ways between terrestrial mammals and dinosaurs with increasing size. Our sample consisted of giant mammal and reptile taxa (i.e., elephants, rhinos, sauropods) plus erect and non-erect outgroups with thin and thick articular cartilage. Our results show that eutherian mammal sub-articular shape becomes narrow with well-defined surface features as size increases. In contrast, this region in saurischian dinosaurs expands and remains gently convex with increasing size. Similar trends were observed in non-erect outgroup taxa (monotremes, alligators), showing that the trends we report are posture-independent. These differences support our hypothesis that sub-articular shape scales differently between eutherian mammals and saurischian dinosaurs. Our results show that articular cartilage thickness and sub-articular shape are correlated. In mammals, joints become ever more congruent and thinner with increasing size, whereas archosaur joints remained both congruent and thick, especially in sauropods. We suggest that gigantism occurs less frequently in mammals, in part, because joints composed of thin articular cartilage can only become so congruent before stress cannot be effectively alleviated. In contrast, frequent gigantism in saurischian dinosaurs may be explained, in part, by joints with thick articular cartilage that can deform across large areas with increasing load.

Highlights

  • Both eutherian mammals and saurischian dinosaurs evolved lineages of huge terrestrial herbivores

  • Previous research indicates that a concatenation of metabolic, reproductive, climatic, and geographic factors influenced the circumstances and means by which gigantism was achieved in sauropods (e.g., [5,6,7]), proboscideans, and Paraceratherium (e.g., [2,3])

  • Given that the limb skeleton is an adaptable framework that moves and supports the body, long bone morphology would be predicted to show different scaling trends between eutherian mammals and saurischian dinosaurs related to their different frequencies of gigantism

Read more

Summary

Introduction

Both eutherian mammals and saurischian dinosaurs evolved lineages of huge terrestrial herbivores. For eutherian mammals, both the Afrotherian and Laurasiatherian lineages gave rise to terrestrial giants, the proboscideans and the ceratotherian Paraceratherium, respectively [1,2,3]. The long-necked sauropods achieved body sizes one order of magnitude greater than the largest terrestrial eutherian mammals [4,5]. It has long been recognized that gigantism of the kind achieved frequently in saurischian dinosaurs occurred much more rarely among eutherian mammals [7,8]. Given that the limb skeleton is an adaptable framework that moves and supports the body, long bone morphology would be predicted to show different scaling trends between eutherian mammals and saurischian dinosaurs related to their different frequencies of gigantism

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call