Abstract

We addressed an understudied topic in the literature of language disorders, that is, processing of derivational morphology, a domain which requires integration of semantic and syntactic knowledge. Current psycholinguistic literature suggests that word processing involves morpheme recognition, which occurs immediately upon encountering a complex word. Subsequent processes take place in order to interpret the combination of stem and affix. We investigated the abilities of individuals with agrammatic (PPA-G) and logopenic (PPA-L) variants of primary progressive aphasia (PPA) and individuals with stroke-induced agrammatic aphasia (StrAg) to process pseudowords which violate either the syntactic (word class) rules (*reheavy) or the semantic compatibility (argument structure specifications of the base form) rules (*reswim). To this end, we quantified aspects of word knowledge and explored how the distinct deficits of the populations under investigation affect their performance. Thirty brain-damaged individuals and 10 healthy controls participated in a lexical decision task. We hypothesized that the two agrammatic groups (PPA-G and StrAg) would have difficulties detecting syntactic violations, while no difficulties were expected for PPA-L. Accuracy and Reaction Time (RT) patterns indicated: the PPA-L group made fewer errors but yielded slower RTs compared to the two agrammatic groups which did not differ from one another. Accuracy rates suggest that individuals with PPA-L distinguish *reheavy from *reswim, reflecting access to and differential processing of syntactic vs. semantic violations. In contrast, the two agrammatic groups do not distinguish between *reheavy and *reswim. The lack of difference stems from a particularly impaired performance in detecting syntactic violations, as they were equally unsuccessful at detecting *reheavy and *reswim. Reduced grammatical abilities assessed through language measures are a significant predictor for this performance, suggesting that the “hardware” to process syntactic information is impaired. Therefore, they can only judge violations semantically where both *reheavy and *reswim fail to pass as semantically ill-formed. This finding further suggests that impaired grammatical knowledge can affect word level processing as well. Results are in line with the psycholinguistic literature which postulates the existence of various stages in accessing complex pseudowords, highlighting the contribution of syntactic/grammatical knowledge. Further, it points to the worth of studying impaired language performance for informing normal language processes.

Highlights

  • Morphological Processing in Healthy AdultsAn important dimension of word knowledge which has been found to affect lexical processing is morphological structure

  • A mixed-effects logistic regression was performed on the itemlevel data for accuracy and a linear mixed-effects regression was performed on the item-level data for reaction times (RT) using the lme4 package in R Studio version 1.2.1335 (Bates et al, 2015; Kuznetsova et al, 2015; R Core Team, 2015; Team, 2018)

  • The current investigation aimed at: (a) examining the ability of PPA and strokeinduced agrammatic aphasia (StrAg) individuals to process pseudowords and to detect violations in deverbal word formation, (b) isolating the contribution of each type of relevant information in deverbal word structure building and (c) comparing the performance of PPA groups for real words: (PPA-G) and StrAg, two conditions characterized by agrammatism, in order to detect its effect in pseudoword processing

Read more

Summary

Introduction

Morphological Processing in Healthy AdultsAn important dimension of word knowledge which has been found to affect lexical processing is morphological structure. In case of inflection and derivation, an inflectional or derivational morpheme attaches to a lexical stem, boy + -s, boy + -ish while in compounding two lexical stems merge together, boy + friend These are highly productive operations in many languages. The major question was whether we need to decompose them into their parts to access their meaning, e.g., boy + ish or whether we access them as one unit, e.g., boyish. This debate has had, and it still has proponents on both sides. Several models of morphological processing have combined whole word access with affix-stripping, suggesting dual route processing for complex words (Frauenfelder and Schreuder, 1991; Chialant and Caramazza, 1995)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call