Abstract

The paper discusses the fundamental mechanisms underlying the interaction between ultrasound and trabecular bone, which is considered a two-phase material. When fluid-saturated cancellous bone is interrogated by ultrasound, in some cases, one or two wave modes are observed. Many authors claim that these waves correspond to the fast and slow waves predicted by Biot’s theory of elastic wave propagation in fluid-saturated porous media. Within our analysis of the physical conditions, predictions of the existing two-phase models of the propagation of ultrasonic waves in the material as well as numerical simulations for fluid-saturated trabecular bone were performed. On the basis of the theoretical results (from numerical studies) and arguments presented in this paper, we aimed to answer the question of whether two waves observed in ultrasonic wave transmission studies can be interpreted as the fast and slow waves predicted by Biot’s theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.