Abstract
Recent accounts of perception and cognition propose that the brain represents information probabilistically. While this assumption is common, empirical support for such probabilistic representations in perception has recently been criticized. Here, we evaluate these criticisms and present an account based on a recently developed psychophysical methodology, Feature Distribution Learning (FDL), which provides promising evidence for probabilistic representations by avoiding these criticisms. The method uses priming and role-reversal effects in visual search. Observers' search times reveal the structure of perceptual representations, in which the probability distribution of distractor features is encoded.We explain how FDL results provide evidence for a stronger notion of representation that relies on structural correspondence between stimulus uncertainty and perceptual representations, rather than a mere co-variation between the two. Moreover, such an account allows us to demonstrate what kind of empirical evidence is needed to support probabilistic representations as posited in current probabilistic Bayesian theories of perception.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.