Abstract
We propose a new notion of variable bandwidth that is based on the spectral subspaces of an elliptic operator where p > 0 is a strictly positive function. Denote by the orthogonal projection of Ap corresponding to the spectrum of Ap in ; the range of this projection is the space of functions of variable bandwidth with spectral set in Λ.We will develop the basic theory of these function spaces. First, we derive (nonuniform) sampling theorems; second, we prove necessary density conditions in the style of Landau. Roughly, for a spectrum the main results say that, in a neighborhood of , a function of variable bandwidth behaves like a band‐limited function with local bandwidth .Although the formulation of the results is deceptively similar to the corresponding results for classical band‐limited functions, the methods of proof are much more involved. On the one hand, we use the oscillation method from sampling theory and frame‐theoretic methods; on the other hand, we need the precise spectral theory of Sturm‐Liouville operators and the scattering theory of one‐dimensional Schrödinger operators. © 2017 Wiley Periodicals, Inc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.