Abstract
Quantitative analyses of empirical data requirements for hydrological simulations are rare. This study aims to analyze how a multi-objective optimization framework and information content computations aid in quantifying field-scale data worth in drainage studies. The results showed how a 1D numerical model and a differential evolution algorithm performed in describing the field water balance. The choice of the optimization target (subsurface drain discharge and surface runoff) impacted the simulation results more than parameter deviations. While the information content of surface runoff data was higher than that of drain discharge, drain discharge data contained more information on most of the soil parameters. Uncertainties related to groundwater outflow data, which were not used in the optimization, were higher than those of drain discharge and surface runoff. A central weighing optimization scheme with two data types produced the best but still incomplete description of the field hydrology. Despite the modest model performance, the results demonstrated how the choice of empirical data and optimization strategy can lead to uncertainties in drainage simulations and how the uncertainties can be assessed. Practically, a low amount of information and a parameter sensitivity analysis can lead to a biased description of uncertainty related to such hydrological variables which are not used in the optimization. Benefits of the modeling framework were shown when assessing (1) model structure adequacy with the Pareto front analysis, (2) information content of different data types regarding different parameters, and (3) uncertainties related to simulating hydrological variables based on optimization against a given data type.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.