Abstract

Structural martensitic transformations enable various applications, which range from high stroke actuation and sensing to energy efficient magnetocaloric refrigeration and thermomagnetic energy harvesting. All these emerging applications benefit from a fast transformation, but up to now the speed limit of martensitic transformations has not been explored. Here, we demonstrate that a martensite to austenite transformation can be completed in under ten nanoseconds. We heat an epitaxial Ni-Mn-Ga film with a laser pulse and use synchrotron diffraction to probe the influence of initial sample temperature and overheating on transformation rate and ratio. We demonstrate that an increase of thermal energy drives this transformation faster. Though the observed speed limit of 2.5 x 10^{27} (Js)^{-1} per unit cell leaves plenty of room for a further acceleration of applications, our analysis reveals that the practical limit will be the energy required for switching. Our experiments unveil that martensitic transformations obey similar speed limits as in microelectronics, which are expressed by the Margolus-Levitin theorem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.