Abstract
Simple SummaryPest management can be greatly enhanced by basic knowledge about pest dispersal patterns in agroecosystems, which for insects often relies on comparisons of genetic variation among populations. The globally invasive sweet potato whitefly Bemisia tabaci is one such pest for which a large body of research has examined patterns of genetic variation. We review this literature to address the question: What spatial scales define B. tabaci populations? These studies are global in coverage and draw from a variety of genetic marker types. We found that genetic differentiation among populations is typically low, and that patterns of genetic diversity suggest that groups of migrating whiteflies from divergent populations are typically being sampled together. Overall, these results suggest that there is high ongoing gene flow over large spatial extents, but recent invasion by most populations could obscure genetic markers’ ability to detect geographic isolation. Genome-wide data collected across finer spatial and temporal scales hold great promise to clarify the spatial extent of a B. tabaci population, and could reveal whether insecticide rotations can be tailored to specific commodities or if coordination across commodities and regions linked by B. tabaci gene flow is justified.Effective pest management depends on basic knowledge about insect dispersal patterns and gene flow in agroecosystems. The globally invasive sweet potato whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is considered a weak flier whose life history nonetheless predisposes it to frequent dispersal, but the scale over which populations exchange migrants, and should therefore be managed, is uncertain. In this review, we synthesize the emergent literature on B. tabaci population genetics to address the question: What spatial scales define B. tabaci populations? We find that within-species genetic differentiation among sites is often low, and evidence of population structuring by host plant or geography is rare. Heterozygote deficits prevail among populations, indicating that migrants from divergent populations are frequently sampled together. Overall, these results suggest that there is high ongoing gene flow over large spatial extents. However, genetic homogeneity typical of recently invading populations could obscure power to detect real isolation among populations. Genome-wide data collected systematically across space and time could distinguish signatures of invasion history from those of ongoing gene flow. Characterizing the spatial extent of B. tabaci populations could reveal whether insecticide rotations can be tailored to specific commodities or if coordination across linked commodities and regions is justified.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.