Abstract
The Reynolds number, Re, is an important quantity for describing a turbulent flow. It tells us about the bandwidth over which energy can cascade from large scales to smaller ones, prior to the onset of dissipation. However, calculating it for nearly collisionless plasmas like the solar wind is challenging. Previous studies have used formulations of an “effective” Reynolds number, expressing Re as a function of the correlation scale and either the Taylor scale or a proxy for the dissipation scale. We find that the Taylor scale definition of the Reynolds number has a sizable prefactor of approximately 27, which has not been employed in previous works. Drawing from 18 years of data from the Wind spacecraft at 1 au, we calculate the magnetic Taylor scale directly and use both the ion inertial length and the magnetic spectrum break scale as approximations for the dissipation scale, yielding three distinct Re estimates for each 12 hr interval. Average values of Re range between 116,000 and 3,406,000 within the general distribution of past work. We also find considerable disagreement between the methods, with linear associations of between 0.38 and 0.72. Although the Taylor scale method is arguably more physically motivated, due to its dependence on the energy cascade rate, more theoretical work is needed in order to identify the most appropriate way of calculating effective Reynolds numbers for kinetic plasmas. As a summary of our observational analysis, we make available a data product of 28 years of 1 au solar wind and magnetospheric plasma measurements from Wind.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.