Abstract

In this paper, we first analyze the difference between the second law of thermodynamics and the laws in other disciplines. There are some phenomena in other disciplines similar to the Clausius Statement of the second law, but none of them has been accepted as the statement of a certain law. Clausius’ mechanical theory of heat, published in the nineteenth century, is then introduced and discussed in detail, from which it is found that Clausius himself regarded “Theorem of the equivalence of the transformation of heat to work, and the transformation of heat at a higher temperature to a lower temperature”, rather than “Heat can never pass from a colder to a warmer body without some other change”, as the statement of the second law of thermodynamics. The latter is only laid down as the fundamental principle for deriving the theorem of the equivalence of transformations. Finally, based on the theorem of the equivalence of transformations and the average temperature method, a general quantitative relation among the heat, the work, and the temperatures is obtained for arbitrary cycles, which is thus recommended as an alternative mathematic expression of the second law. Hence, the theorem of the equivalence of transformations is the real Clausius Statement of the second law of thermodynamics.

Highlights

  • As with the first law of thermodynamics, the second law of thermodynamics has been verified by countless natural facts

  • The Clausius Statement was expressed as “Heat can never pass from a colder to a warmer body without some other change, connected therewith, occurring at the same time”, and the Kelvin–Planck Statement as “It is impossible to construct a device that operates in a cycle and produces no other effect than the production of work and the transfer of heat from a single body”

  • The Clausius Statement is more in accord with experience and easier to accept, while the Kelvin–Planck Statement provides a more effective means for bringing out second law deductions related to a thermodynamic cycle [3]

Read more

Summary

Introduction

As with the first law of thermodynamics, the second law of thermodynamics has been verified by countless natural facts. It is strange that the second law of thermodynamics is quite different from other laws, like Newton’s law of motion, Ohm’s law of electric conduction, and Fourier’s law of heat conduction, etc. There are differences such as; (1) there are many different statements for the same law; (2) it is only a qualitative description of a physical phenomenon, rather than a quantitative relationship between different physical quantities; and (3) some phenomena similar to the Clausius Statement exist in other disciplines. A fundamental principle rather than the statement of the second law of thermodynamics

Carnot’s Theorem
Clausius
Alternative Mathematic Expression of the Second Law
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.