Abstract
The space of generalized gradient approximation (GGA) and meta-GGA (mGGA) exchange approximations is systematically explored by training 25 new functionals to produce accurate lattice parameter, cohesive energy, and bandgap predictions. The trained functionals are used to reproduce exact constraints in a data-driven way and to understand the accuracy trade-off between the mentioned properties. The functionals are compared to notable mGGA functionals to analyze how changes in the enhancement factor maps influence the accuracy of predictions. Some of the trained functionals are found to perform on par with specialized functionals for bandgaps, while outperforming them on the other two properties. The error surface of our trained functionals can serve as a soft-limit of what mGGA functionals can achieve.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.