Abstract

The origins of proof-theoretic semantics lie in the question of what constitutes the meaning of the logical connectives and its response: the rules of inference that govern the use of the connective. However, what if we go a step further and ask about the meaning of a proof as a whole? In this paper we address this question and lay out a framework to distinguish sense and denotation of proofs. Two questions are central here. First of all, if we have two (syntactically) different derivations, does this always lead to a difference, firstly, in sense, and secondly, in denotation? The other question is about the relation between different kinds of proof systems (here: natural deduction vs. sequent calculi) with respect to this distinction. Do the different forms of representing a proof necessarily correspond to a difference in how the inferential steps are given? In our framework it will be possible to identify denotation as well as sense of proofs not only within one proof system but also between different kinds of proof systems. Thus, we give an account to distinguish a mere syntactic divergence from a divergence in meaning and a divergence in meaning from a divergence of proof objects analogous to Frege’s distinction for singular terms and sentences.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.