Abstract

The group velocity of 'space-time' wave packets - propagation-invariant pulsed beams endowed with tight spatio-temporal spectral correlations - can take on arbitrary values in free space. Here we investigate theoretically and experimentally the maximum achievable group delay that realistic finite-energy space-time wave packets can achieve with respect to a reference pulse traveling at the speed of light. We find that this delay is determined solely by the spectral uncertainty in the association between the spatial frequencies and wavelengths underlying the wave packet spatio-temporal spectrum - and not by the beam size, bandwidth, or pulse width. We show experimentally that the propagation of space-time wave packets is delimited by a spectral-uncertainty-induced 'pilot envelope' that travels at a group velocity equal to the speed of light in vacuum. Temporal walk-off between the space-time wave packet and the pilot envelope limits the maximum achievable differential group delay to the width of the pilot envelope. Within this pilot envelope the space-time wave packet can locally travel at an arbitrary group velocity and yet not violate relativistic causality because the leading or trailing edge of superluminal and subluminal space-time wave packets, respectively, are suppressed once they reach the envelope edge. Using pulses of width ∼ 4 ps and a spectral uncertainty of ∼ 20 pm, we measure maximum differential group delays of approximately ±150 ps, which exceed previously reported measurements by at least three orders of magnitude.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.