Abstract

Abstract Background In recent decades, many attempts have been made to restore eutrophic lakes through biomanipulation. Reducing the populations of planktivorous and benthivorous fish (either directly or through stocking of piscivorous fish) may induce ecosystem changes that increase water transparency and decrease the risk of algal blooms and fish kills, at least in the short term. However, the generality of biomanipulation effects on water quality across lake types and geographical regions is not known. Therefore, we have undertaken a systematic review of such effects in eutrophic lakes in temperate regions throughout the world. Methods Searches for literature were made using online publication databases, search engines, specialist websites and bibliographies of literature reviews. Search terms were developed in English, Danish, Dutch and Swedish. Identified articles were screened for relevance using inclusion criteria set out in an a priori protocol. To reduce the risk of bias, we then critically appraised the combined evidence found on each biomanipulation. Data were extracted on outcomes such as Secchi depth and chlorophyll a concentration before, during and/or after manipulation, and on effect modifiers such as lake properties and amounts of fish removed or stocked. Results Our searches identified more than 14,500 articles. After screening for relevance, 233 of them remained. After exclusions based on critical appraisal, our evidence base included useful data on 128 biomanipulations in 123 lakes. Of these interventions, 85% had been made in Europe and 15% in North America. Meta-analysis showed that removal of planktivores and benthivores (with or without piscivore stocking) leads to increased Secchi depth and decreased chlorophyll a concentration during intervention and the first three years afterwards. Piscivore stocking alone has no significant effect. The response of chlorophyll a levels to biomanipulation is stronger in lakes where fish removal is intense, and in lakes which are small and/or have high pre-manipulation concentrations of total phosphorus. Conclusions Our review improves on previous reviews of biomanipulation in that we identified a large number of case studies from many parts of the world and used a consistent, repeatable process to screen them for relevance and susceptibility to bias. Our results indicate that removal of planktivorous and benthivorous fish is a useful means of improving water quality in eutrophic lakes. Biomanipulation tends to be particularly successful in relatively small lakes with short retention times and high phosphorus levels. More thorough fish removal increases the efficacy of biomanipulation. Nonetheless successes and failures have occurred across a wide range of conditions.

Highlights

  • In recent decades, many attempts have been made to restore eutrophic lakes through biomanipulation

  • Most of the excluded articles contained no relevant information on how water quality had responded to biomanipulation, or did not touch on reductions of planktivorous or benthivorous fish at all

  • We found that biomanipulation effects on water quality increased with fish removals as expressed per hectare and year and with the depletion of fish stocks

Read more

Summary

Introduction

Many attempts have been made to restore eutrophic lakes through biomanipulation. We have undertaken a systematic review of such effects in eutrophic lakes in temperate regions throughout the world. Many lakes in urban or agricultural regions of the world were eutrophied due to sewage discharges or nutrient runoff from land. The decomposition of dead plankton can lead to oxygen depletion and fish kills [3]. Problems of these kinds have often persisted even when nutrient supplies from the surroundings have been reduced, e.g. through sewage treatment. One important reason is that phosphorus stored in the sediments of eutrophied lakes can exchange with the water and thereby keep it nutrient-rich for decades [4]. Once a lake has reached the latter state, it may tend to remain there even if nutrient concentrations in the water decrease

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.