Abstract

In this paper the basic concepts of the classical Hamiltonian formalism are translated into algebraic language. We treat the Hamiltonian formalism as a constituent part of the general theory of linear differential operators on commutative rings with identity. We take particular care in motivating the concepts we introduce. As an illustration of the theory presented here, we examine the Hamiltonian formalism in Lie algebras. We conclude by presenting a version of the “orbit method” in the theory of representations of Lie groups, which is a natural corollary of our view of the Hamiltonian formalism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.