Abstract

ABSTRACT Introduction The concept of click chemistry was introduced in 2001 as an effective, efficient, and sustainable approach to making functional groups harnessing the thermodynamic properties of a set of known chemical reactions that are based on nature. Some of the most common examples include reactions that produce 1,2,3-triazoles, which have been used with great success in drug discovery and development, and in chemical biology. The reactions unite two molecules quickly and irreversibly, and the reactions can be performed inside living cells, without harming the cell. Areas covered The main focus of this perspective is the future of click chemistry in drug discovery and development, exemplified by novel click chemistry approaches and other aspects of the drug development enterprise, like SPAAC and analogous techniques, PROTACs, as well as diversity-oriented click chemistry. Expert opinion Drug discovery and development has benefited enormously from the amazing advances that have been made in the field of click chemistry since 2001. The methods most likely to have the most future applications include metal-catalyzed azide-alkyne cycloadditions giving 1,2,3-triazoles, SPAAC for medical diagnostics and vaccine development, other congeners, Sulfur-Fluoride Exchange (SuFEx) and Diversity-Oriented Clicking (DOC), a concept with diverse molecular methodology with the potential for obtaining extensive molecular diversity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.