Abstract

We sought to clarify on the hitherto unresolved role of N-terminal transmembrane segments (TMS) of cytochrome P450 (CYP) and its' reductase (CPR) in protein interaction/catalysis. TMS analyses show little evolutionary conservation in CYPs. The conserved CPR's TMS poses limited scope for predictable/consistent hetero-recognition with the wide bevy of CYPs' TMS, as evident from preliminary analyses and TMhit server predictions for inter-helical binding. Further, experimentations with four different CPR preparations (preps) and two liver microsomal CYPs (2C9 and 2E1) shows that the hydroxylated product formation rate is not quantitatively correlated to the extent of integrity of the CPR N-terms. Incorporation of cytochrome b (5) in some reactions afforded similar rates while employing either fully intact or partially intact CPR. A survey of literature shows that liver microsomal CYPs function quite well even without the TMS or with significantly altered TMS. These observations negate the hypothesis that N-term TMS of CPR or CYP is obligatory for CYP-CPR interaction and catalysis. Also, in CYP2E1-mediated hydroxylation of para-nitrophenol, the extent of intactness or truncation did not significantly affect the CPR preps' catalytic role at very low or high substrate concentrations. To interpret these results, we draw support from recently published research on reduced nicotinamide adenide dinucleotide phosphate oxidase (Takac et al., J Biol Chem, 286:13304-13313, 2011) and from our pertinent earlier works. We infer that CPR' free TMS segment could alter the diffusible reactive oxygen species' dynamics in the microenvironment, thereby altering the reaction outcome. Based on the evidence, we conclude that TMS merely facilitates "interaction/catalysis" by anchoring the CYP and CPR in the lipid interface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call