Abstract

Calcium (Ca2+ ) is essential for the normal functioning of the brain: Ca2+ inflow into synaptic compartments is a major trigger of neurotransmitter release and of long-term plastic changes of synaptic efficiency. Ca2+ influx depends on the gradient for this ion across the plasma membrane, and slight fluctuations of extracellular Ca2+ concentration have significant impact on axonal excitability, synaptic transmission, and plasticity. The work by Forsberg etal. reports a concentration of physiologically active Ca2+ in human cerebrospinal fluid (CSF) that is half of that normally used in artificial CSF in electrophysiological brain slice experiments. By studying the impact of such difference of extracellular Ca2+ concentration, the authors reported significant differences in terms of neuronal excitability and long-term potentiation in rat hippocampal slices. We now discuss these new findings in the context of the spatial organization of synapses, on the role of astrocytes in filtering the synaptic content and on the complexity of plasticity in a broad context of metaplastic modifications of synaptic efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.