Abstract

Erythrocytes appear to be ideal sensors for regulating microvascular O(2) supply as they release the potent vasodilator ATP in an O(2) saturation-dependent manner. Whether erythrocytes play a significant role in regulating O(2) supply in the complex environment of diffusional O(2) exchange among capillaries, arterioles, and venules, depends on the efficiency with which erythrocytes signal the vascular endothelium. If one assumes that the distribution of purinergic receptors is uniform throughout the microvasculature, then the most efficient site for signaling should occur in capillaries, where the erythrocyte membrane is in close proximity to the endothelium. ATP released from erythrocytes would diffuse a short distance to P(2y) receptors inducing an increase in blood flow, possibly the result of endothelial hyperpolarization. We hypothesize that this hyperpolarization varies across the capillary bed depending upon erythrocyte supply rate and the flux of O(2) from these erythrocytes to support O(2) metabolism. This would suggest that the capillary bed would be the most effective site for erythrocytes to communicate tissue oxygen needs. Electrically coupled endothelial cells conduct the integrated signal upstream where arterioles adjust vascular resistance, thus enabling ATP released from erythrocytes to regulate the magnitude and distribution of O(2) supply to individual capillary networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.