Abstract

We discuss room-temperature condensation experiments using either an electrical discharge or ultraviolet radiation to initiate gas-phase reactions resulting in silicate smokes. This formation process could represent processes occurring in low-density environments, because it is possible that the gases, which can condense at higher temperatures, remain after it cools, e.g., following a shock. In these environments, many condensates could be formed simultaneously. However, in the case of our iron silicate experiments, many of the smoke particles are iron silicate with a uniform composition that reflects the composition of the ambient gas atmosphere where they were produced. In these experiments, smoke particles of other materials such as iron oxide and silica were not formed. In the case of our Si–O experiments, hydro-silicate smoke particles are produced together with anhydrous silicate particles directly from the gas phase without later hydro alteration. The infrared spectra of these silicate particles show a very strong 11.36 μm feature attributed to H2Si2O4 and possibly to Si2O3 compared with a simultaneously observed 9.2 μm feature due to the Si–O vibration. We believe that finding the driving force for grain growth under a wide range of environmental conditions is important if we are to understand grain formation, because silicate grains, which formed in a plasma field or under UV irradiation, show different compositions, structures, shapes, and spectra from thermally condensed grains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.