Abstract

Recently, several linear scaling approaches have been introduced which replace the time dominating diagonalization step in semiempirical methods, enabling practical calculations to be performed on very large molecules. This paper compares the accuracy and performance of pseudodiagonalization (PD), conjugate gradient density matrix search (CG-DMS), the Chebyshev polynomial expansion method (CEM), and purification of the density matrix (PDM) as linear scaling substitutions for diagonalization. The scaling, speed, and reliability of these methods are compared for AM1 single point energy calculations on polyglycine chains (up to 20 000 atoms), water clusters (up to 12 300 atoms), and nucleic acids (up to 6300 atoms).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.