Abstract

TSV interconnect based 3D/2.5D packaging has gained significant attention since its introduction in FPGA (for die partitioning) and HBM integrated GPU module (for gaming application). The performance potential offered by this technology is unequalled by any other packaging platform today. High-end applications like deep learning, datacenter networking, AR/VR, and autonomous driving are becoming real, thereby pushing the limits of other current packaging platforms. Fueled by increasing bandwidth needs for moving data in cloud-computing and supercomputing applications, performance-driven markets have adopted 3D stacked technologies in a row. Imaging, as the first market adopter of 3D integration, is propelling the market with an increasing number of sensors in smartphones and tablets, including 3D imaging. TSV-based products can be classified in three ranges: low, middle, and high-end. The middle and high-end product markets like CMOS image sensor, memory cube, and interposer are based on a via-middle process. In low-end products, we can also find TSV based on via-middle (i.e. in Apple's fingerprint sensor), but for cost reasons the MEMS industry is using essentially a via-last process, which is cheaper than a via-middle process. TSV's penetration rate in low-end products will remain stable, with the main source of growth due to RF filters in smartphone front-end modules, which keep increasing in order to support the different frequency bands used in 5G mobile communications protocol. This presentation will discuss about the market and technology trends of the TSV based 3D/2.5D packaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.